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1. Introduction

As a result of the December 1978 workshop session of the panel on gravity
field and sea level requirements the resulting report "Applications of a Dedicated
Gravitational Satellite Mission" (1979) contains a discussion on the kind and pre-
cision of gravity parameters to be provided through a dedicated gravitational
satellite mission. These requirements are in essence-

1. For geological or geophysical applications gravity data (gravity anomalies ?)
with a half-wavelength resolution of down to 100 km and an accuracy of t 2.5
to 10 mgals depending on the application;

2. Oceanographers would need geoid height differences for distances of 100 to
3000 km with an accuracy of ±10 cm.

The same report contains, in addition, a list of open questions concerning e. g.
the assumptions on the range rate data noise, the needed orbital accuracies, the
'best" gravity parameterization, the appropriate error measure a. s.o., to be
analyzed in further studies.

The purpose of this report is to answer part of these questions in an error
analysis for satellite-to-satellite tracking (SST) in the low-low mode. For the
influence of systematic and random uncertainties of the satellite orbit upon the
gravity estimates, a problem of high relevance, which is considered in Douglas
et al. (1980) too, sensitivity coefficients are derived. The study will also analyze
the dependency of the accuracy of the estimated gravity parameters on the meas-
urement precision, the altitude of the satellite, the separation and spatial
arrangement, and on the data coverage. As a conclusion of the above stated user
requirements the estimated parameters will be on one hand lox 10 mean gravity
anomalies (for geophysical purposes) and on the other hand geoid heights, and
geoid height differences, respectively, (for oceanographers). The estimation
model that allows without difficulties this type of flexibility is the least squares
collocation model. Because of some conceptual problems, this model will be
simplified, without any serious impact on the validity of the results, however.
Special attention will be put on the definition of a valid concept for the error
measure.

This study may be considered as complementary to those of Schwarz (1970)
and Kaula et al (1978) in that a different type of mathematical model is employed,
to Krynski (1978) because of the more operational type of model, and to Rummel
(1979) where for a purely theoretical model the optimal situation is analyzed. Tt
is also complementary to Rapp and Hajela (1979) who discuss In a very similar
manner the corresponding SST high-low case.
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2. Observational Model for Range Rates

The range rate b between two satellites at S1 and 2 is expressed as

b(s, PSI) '= 12 * 212 (

where X = X(S 2 ) -X(S 1 ) is the velocity difference between the two space
probes, and e = X'X, the unit vector pointing from SI (with position vector

expressed e.g. in an quasi-inertial frame) to S2 and p is their distance.
From equation (1) the observational model will be derived, similar to the model in
Rummel et al. (1978) and according to guidelines developed in Grafarend (1979).
[Neither the original character of the range rate observations, as described in
Eddy & Sutermeister (1975) or in Barthel et al. (1978), which may be for example
fringe or doppler counts, nor the effect of non-gravitational and tidal perturbations
on the motion of the satellites will be considered in this context.]

Each observed range rate LI at time t1 is linked to the gravity field of the
earth, parameterized by + 8 (8'... known computed longwavelength
part of the gravity.field, 6 ... residual part) through the position and velocity
vectors, X and X, of the two satellites:

A(t; X1(a), 2 (), , X()) + C (2)

with C,... observation error. With y"' = (X., _j t for the complete state vector
and with Y1o for the state vector at t = to (initial condition) a Taylor expansion of
equation (2) at the computed reference locations Se and S' of the two satellites
yieldst

11 = Aj(t 1 ;S ,S2) + (grady,4)' (S0)[(grad_, Yl) T (S) _Ylo +

(grad, _X)T (Sl) 60 + (grad,4 A)' (Sc) [(gradq.Y_)T (S) _Y2 0 +

(grad AY)' (Sa)e ] + Cl, (3)

where el shall now contain, besides the measurement noise, the terms of second
and higher order of the series expansion. [The gradient of a vector shall thereby
express the gradient of the components the vector and constitute a matrix of
dimension (no. of gradient components) x (no. of vector components)1. Equation (1)
yields:

- (grad, b)(SO) = (grad,, A)(SC) = J.12
and In analogy to Schwarz (1970) we denote

-2-
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(grad!,, 1 ) (S) =_2

Il-10- -

(grad 8 Y1) (S ) = El'

(grad 8 1) (S2) = W-,

_.2 -W = f12

Then equation (3) becomes

e = I + + (l 14)

(With C = k12- C E1 2 , according to Rummel et al. (1978), the cross-track
velocity) or as a formal matrix equation

_r BY + A $+ E (5)

where

r= ffi - /, B = F 1 , Y =E ,and A = T

- L e...L J - L toe_-

If D is the a priori variance covariance matrix of r and C the second-order
moment ("covariance matrix", reproducing kernel) of M wU A assumed to

be an element of an infinite dimensional Hilbert space, then the best linear es-
timates for Y and . are, see e.g. Moritz (1972):

-~T 1[°] [
j A 1 _ .C] A- r (6)

" Y e1

A P - _ -1 T = 1)

~=~ W121 19(r 0 1 1'7)

= CA ' + D [P= 1C COL1 + D (8)

-3-
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Problems in using this type of least squares collocation solution come from
the difficulties in deriving the matrix & of equation (8). It requires the connec-
tion of the mentioned HUbert space with reproducing kernel (with gS based on
a chosen degree variance model) with time dependent functionals such as the state
vectors of the two satellites. This conceptual problem and linked to it the problem
of the practical computation of Q for instance by numerical or analytical inte-
gration w ill not be investigated in this report. Instead an alternative approach will
be analyzed which comes also closer to the concept of "direct gravity mapping"
as formulated by Muller & Sjogren (1968).

3. Observational Model for Range Rate Changes and Orbit Requirements

Instead of working with the range rates 45 one can also analyze their time
derivative , the range rate changes. Equation (1) yields:

p(S1 ,S 3 ) 12.2 * .1 + a 2* L2(9)

For SST in the high-low mode Hajela (1978, p. 6) showed that the second term on
the right-hand side is negligible, a fact that tremendously facilitates the whole
model. It is to be shown that this is at least on an average the case for the low-
low version, too. With

P-1 2.

1= Piz (X ?Ia 12 C

equation (9) becomes

O(s ,s2) = _ 2 + P1  ( (10)

Introducing the reference range rate change

-1 e al 1C

as derived from some approximate state vectors and an ellipsoidal reference field
or, in addition, a set of known potential coefficients and assuming 2 and P1
to be known (which has no consequence on the following evaluations) one obtains
as difference:

6= 6R + p - 69C12.(

Evaluation of the average magnitude of the second term on the right hand side of
equation (11) or of 0 - 1 8k , since

-4-
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From a linearization of the energy conservation law follows according to Wolff
(1969): -

where X is the mean velocity of the satellites and T12= T(S.) - T(S 1 ) the
disturbing potential difference. The average behavior of the earth's gravity
potential is expressed by a chosen degree variance model, with af(T) the
disturbing potential degree variances. On an average the second term becomes
therefore:

1 1 (var T(S1 )

ave(P1X-) =ave('---rQ-T3 ) = +

- 2 coy (T(S 1),T(S2 )) + var T(S3 ) ). (12)

Evaluation of the average magnitude of the first term on the right hand side of
equation (11), i.e. of

E.g. for radial separation one obtains

.i2 e 3 =-(T(S ) -T(SI)) =T,

and

ave( .X1 • e1) (var T. (SI) - 2cov(T,(Sl),T,(S2 )) + var TI(S 2 )) (13)

The average magnitude of the two terms on the right hand side of equation (11) for
the high low as well as for the low low mode is contained in Table 1. The values
have been determined - based on equations (12) and (13) - from equations (A5) and
(A6), described in the appendix.

Table 1. Average magnitude of the two terms on the right hand
side of equation (11)

mode wave lengths first term of (11) second term of (11)
107' msec - ' 10- 5 msec- 2

high 2 - 18.068 0.277 • 10 "-

-low 19 - 5.066 0.000-" 10-6
low 2 - 1.498 0. 244 • 10 - 6

-low 19 - 1.078 0.016 • 10- 6

-5-
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The numbers of Table 1 as well as the level of the observational noise,
to be discussed later, clearly indicate that the second term can be neglected
without significant loss of accuracy. The basic model will therefore be:

*S1 * SO (14)

From now on, range rate changes are considered as being observed. They are
obtained from range rates by numerical differentiation, as discussed e. g. in
Rummel et al. (1976) and Hajela (1978). The mathematical model of equation (14)
is linked to the observed range rate changes by

-Z (tti; X1(f), 3 (2), X1(2), 2(2)) + (15)

Assuming for a moment the positions S1 and Sj of the two satellites to be known,
the dependence on the unknown gravity parameters 68 = 8 - 8c is expressed by

p1 i (ti ; S1 I S2) + 6 1 2 2 + E

and since

8R 126= - 6R, = (grad, T)(S.) - (gradx1 T)(S,)

= grad T12

the observation equation becomes in vector form:

t p (t1 ; S3,Sz) + (grad~ (grad T12)) T (S1 I S 2) S1 + E. (16)

In analogy to the last chapter the uncertainty of the satellite positions is taken
care of by '

L t C(; So So) + (grad, O) (Sr ) A I + gad )T (S) X2
2-1 1 + ______________

+ (grad. (grad T )r (St, S ) 68• e3 + E (17)

The terms (grad&. T(S-) and (grad, )T (Sc) express on one hand the coeffi-
cients for an orbital improvement from the observed range rate changes, on the
other hand they define the sensitivity of the observations on orbit errors as ex-
pressed by 6_X, the difference between the actual and the reference orbit. This
type of coefficient matrix is denoted 0:

. . T Cj e 1 21(grad (X -Pe1) + K x 'le] i,j = 1,2,3

Expressing C1 in a local ( , ) - system as defined in Reed (1973) and assuming
radial separation of the two satellites, it becomes

-6-



12 V1 1.2

(1 0 ) (12) < /
(Via) 121

where e.g. C C stands for _ 2V

0 is now split into the contribution of the normal field, P and into the average
contribution of the residual field, 92, , i.e.:

(l-fln + 2, and

S= -j-~:~r ( + (r ),

_ = ave(-P-' TS) + ave T ).

Magnitude of 0.,

The r-terms for the determination of 2 are (Heiskanen and Moritz, 1967,
p. 231):

r GM s a a /
= [1I- E(2I+ 1) J., (, Pa (sin )

r

=~ 0,

with GM ... geocentric gravitational constant
J2 .. spherical harmonic coefficients
a ... semimajor axis of the earth

Pa (cos i) ... Legendre polynomial.

Inserting the geodetic constants of the Geodetic Reference System, 1967 and
assuming a radial separation of 50 km at 200 km altitude one obtains at most:

-7-



-0.272 10-6 sec- 2  radial (a = 00)
_ = 0.000 84 • 10- sec 2 latitudinal (P = 450)

0 longitudinal

For analongor cross track separation all three components are less than
1 E.U. = 10- 9 sec -2 which is obvious because of the distinct dominance of the
radial term in the reference field.

Magnitude of Or

The average values for T C and Tc are again taken from an adopted
degree variance model. Equations (A6) and (A7) of the appendix yield

O = ave (-p - 1 T) + ave T1 2  0.63 E.U.

The two other components will on the average be at most of the same magnitude.

The entire contribution, 6 , of an orbit error AX1 or L x_ if expressed
in the (,7,1)-system is:

66 (~+ O2r; 4X

The orbit corrections AX, and AXa depend on the gravity parameters 6. (short
wavelength part) and on the initial state vector corrections AX10 and AX. (long
wavelength part) and so does A.. Of concern for the gravity parameter estimation
are unmode~led short wavelength effects. They are caused especially by non-
gravitational disturbances, and to a less extent (because of the long-wavelength
characteristic) by tracking error and tracking station uncertainties. The latter
when multiplied with short-wavelength coefficients, i.e. with Or , may cause
problems, too. In figure 1 the magnitude of the range rate change error due to
an orbit error for the terms a; (radial), O. (along or cross track), and

C( (: 0, n 77) are shown. It clearly indicates that especially the disturbances
in the radial component of the orbit are critical. There are also given three levels
of measurement precision (0. 001, 0.01, and 0.1 mgal). Their relation to what is
actually feasible will be given later.

I.

-8-



mgail

1.000

0.100

0.010

0.001

10

10-5-

0.01 0.1 1.0 10.0 AX m
Figure 1. Range rate change error due to an orbit error for the terms

C2 C (radial), 079 (along or cross track), and 3 (- "

In the following - after having some insight into the impact of errors on
the orbit - the orbital correction will be disregarded. From equation (17) the
estimation model becomes therefore:

f t S1 (t S,) + (grad_ (grad T )) T (S1 ,S a ) 5  e.. + C (18)

-9-



or with

r = I - 60 (tt ; S1 , S.), and A (grad_ (grad T1))r (S1 , Sa):

r= A M +£ (19)

With D now the a priori variance covariance matrix of the range rate changes
r and _ as before the best linear estimate ofrm i JI. 112 r + j' y_ - + 12

in.-_ (20)

becomes

(AT D-A + C 1 _'A' -' r

= CAT(AC A' + D r

= L r (21)

where L = CoA T (ACAT + D)-' is the estimator.

4. Computational Procedure and Error Measure

The goal of this study is to perform an error analysis of SST in the low-low
mode. The adequate error measure is the a posteriori variance-covariance matrix
for the gravity parameters to be estimated from a realistical arrangement of
sample points. The a posteriori variance-covariance matrix provides on one hand
a reliable measure of the variance of the quantities to be estimated and on the
other hand the covariance structure, too, which shows how independent the esti-
mates actually are. The commonly used form of the a posteriori variance-
covariance matrix, derived from equation (21), is:

e c(-C A ( CgA+D) - AC . (22)~A

E is the second-order moment E ([. - - 6 r. With model equation
) and the estimate (21) one finds

4

Et1y -M[L8 - MIT M E A + g) - A c MII

P Efy A' IB T + LD LT

where B (_ A - ), I... identity matrix, and E ( c I = 0. The expectation opera-
torba tobe replacedbythe averaging operator, M, over the sphere, see e. g.
Heiskanen and Morltz (1967, P.258) to obtain

-10-
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ET + L D L T  
(23)

This is an alternative formulation of equation (22). It presents with the first
term, B go _B T, the configuration inadequacy; B = L A - I would be 0 in the
optimal case. The second term shows the propagation of the measurement error.
Thus the contribution of the first term could be minimized by optimizing the con-
figuration, that of the second term mainly by improving the observational pre-
c is ion.

In equation (22) A C A' is nothing but C , the a priori variance covar-
iance matrix of the observations, and C A the cross-covariance Co 6 between
the parameters to be estimated and the range rate changes, or:

f = C - C (C + D) -1 Cr (24)

Since from equation (14)

= - = (7T 2 - T )) ' E1

where T will be referred to a known reference fleld upto degree iax= 12, a single
matrix element, [ij], of Co becomes

C , 2 eiC[(VT 2 - VT I ); (VT2 - VT,) j ) elz,j

= eT [CTa ,}-,i; CTa,)-CfVTa,1; VT1 ,, } - C[VT1 , ;VT2,)

+ Cf TI,;VTj]IS 1 2, . (25)

The gradient is given in an earth-fixed ( r, 0O, X) - system with
VT [3 T  I aT 1I Tl

;T r8o' rcoso

Thus, before inserted into (25) the unit vectors e1 provided in an earth-fixed
(x, y, z) -system have to be transformed to the ( r, 0 , X) -system (see Hajela,
1978, p. 8) by

(r,W,~ - X (y 9 Z)
E12 - E12 and

[ cos0 cosX cos osinX sinoP1

- -sin cos , sincosin X cosoJ

L - slns cos X

Similarily an element of Co becomes:

C6,= C6,VT2 ,J - C[60, VTjjI em, . (26)

-11-



The subroutine COVAX described in Tscherning 1976 provides all needed
A T I )T, I ;bT

covariance elements. Instead of the gradient elements r , I o _

,1 3T I bT I T'
e.g. In units of mgal 10-  msec 2 ], it gives 1 LT - I. . .,

r 3r yr10' yrcos o A.X
in units of(E.U., arcsec, aresec), with Y... normal gravity. The conversion is
carried out by means of the ziagonal matrix

r 0 0
0 - (y " 0
0 0 - /'0 6

The underlying degree variance model used in all computations is (see Tscherning
and Rapp, 1974):

425.28 (1-l) [mgalzl I(I -2)(L +24)'

for the gravity anomaly degree variance, and

re = 6.369 779 9 • 10'3 m

for the radius of the Bjerhammar sphere. The computation of one single element
of .Q requires 6 x 4 different covariance elements and is therefore very time
consuming.

As an alternative we used therefore the subroutine COVAPP of Siinkel (1979).
This subroutine computes the covariance elements by a spline interpolation from
elements stored once for all in a table. The access is organized almost identical
to COVAX. For a sufficiently dense interpolation table both subroutines yield
almost identical results. COVAPP is much faster than COVAX but requires, of
course, additional core storage.

As described in the introduction the gravity parameters investigated in the
error analysis will be

- geold heights and geoid height differences, and
- lox 10 mean gravity anomalies (which contain, roughly, information

down to a half-wavelength of 100 kin).
The estimates for mean gravity anomalies are obtained by averaging over 6I
point estimates in each 1x 10 block.

It remains to define the a priori variance covariance matrix D of the
observations. In a real world experiment one could depart from the original range
rate observations and derive from them range rate changes by numerical differen-
tiation, as described in Rapp and Hajela (1979). Since we are going to work directly
with range rate changes we have to define precision levels for them which cor-
respond in a well defined manner to range rate precis ions. We define that certain
range rate and range rate precislons correspond to each other if the same piece

-12-



I
of luformat ion, e.g. mean gravity anomlies with approximately the same
standard deviation and the same resolution can be derived from them. In order
to deduce the equivalent precision levels the degree variance model of one
observed quantity, e. g. range rate changes equation (A6), is compared with
the corresponding degree variance model of the observation noise. The resolu-
tion of the measurement process is then defined by that frequency at which the
signal, represented by the degree variance model, is equal to the noise in
amplitude. For higher frequencies the noise would dominate the signal. In
order to have the same resolution for the observation type to be compared with,
e. g. range rates, the signal-to-noise ratio has also to be equal to one at
this "resolution frequency". Under this assumption one can deduce from the
degree variance model of the signal and noise of the second process - equations
(A5) and (A9) - the corresponding precision of the second process. Based on
the expressions for the degree variance models of signal and noise for range
rate and range rate change - derived in the Appendix - figure 2 is computed.
The graph relates range rate and range rate change (- acceleration in the line
of sight) precisions, covers a range from an altitude of 150 km to 300 km of
the satellite system, and is valid for low-low and high-low configurations.

iooff

10-6

10-7

10-8

10- 9

10-9 10-8 10-7 10-6 10-5 10-4 ms -1
Figure 2. Range rate change (acceleration in the line of sight) precision

versus range rate precision.

-13-



Figure 2 enables us to assign to each range rate precision introduced into

the a priori variance covariance matrix D the equivalent precision for observed
range rates. The observations are assumed to be uncorrelated and of equal
variance 0 , or D = aoI. Representative range rate precisions which are
envisaged for coming experiments and the equivalent precision for range rate
changes are e.g.

10 ms_ -A 1.5 10 - ms - a

10 ms_- A 2.2.10 -6 ms "

10-*ms-_ 3.1 •10 - ms -
l0 " 7ms - ' 4.0. 101 ms - 2

These numbers allow now to valuate the magnitude of the second term of equation
(11) (see table 1), and the impact of systematic and random errors ink the orbit
as displayed in figure 1.

For numerical simplicity _C in equation (24) is decomposed into its
e igenvalues:

U 1 = A U (21)

(U ... matrix ifeigenvectors of C with U U = U U = 1, and A ... diagonal
matrix containing the eigenvalues-). As discussed in Rummel et'al. (1979) this

allows on one hand the repetition of the error analysis with various observation
noise levels ao2 with solving the system of linear equations (27) only once and
gives on the other hand a perfect insight into its stability behavior.

Equation (24) becomes then:

+= - _  U(A + T -I U C

or with CO U V:

E = D- V(A +(28)
+~ a 2 § 2V-ta2

where (, + _ is a diagonal matrix with elements 1'(X1 - a0 
)  For a

separation of the contributions of B C B' and L D LT of ED in equation (23)
the decomposition is also performedQ L D 7: :

L D L' = C_6.(2_ + ai)' (go " + a0 _I-, Ch

V (A6 + a021) - 2 1( A + a_02  VT (29)

Finally, it is necessary to generate sample points for the two satellites.
A circular orbit has been generated with the following characteristics-

-14-
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mission period 50 days
inclination 680
sampling interval 20 sec
altitude of S1  200 km (and 150 kin, 250 km, 300 kin)
period 5301 sec

For stability reasons spherical distances of smaller than 0.30 between two
adjacent sample points were not permitted. The area for which sample points
areused intheanalysis is [AI0" s X ! 5'J and [o110 s o - 90] The

resulting ground track coverage is given in figure 3.

Figure 3 also contains the six 1x 1' blocks for which the mean gravity
anomaly error analysis will be performed. In order to pronounce the special
features of a radial, along track, or cross track arrangement of the two satel-
lites the second satellite is kept exactly in one of these modes throughout the
entire mission period for each run to be analyzed.

-15-
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Figure 3. Ground tracks with sample points and six 10x 10
blocks for the mean gravity anomaly estimation.
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5. Results

All a posteriori standard deviations for mean gravity anomalies, geoid
heights, and geoid height differences will refer to a reference field of degree
and order 12, assumed to be known.

lx 10 Mean Gravity Anomalies

Figure 4 shows the standard deviation of an estimated lox 10 mean gravity
anomaly (block no. 2 in figure 2) computed from the 74 sample points given in
figure 2 as a function of the assumed range rate change observational precision
a( 0). The corresponding range rate standard deviation is also indicated. The
graphs are given for a cross track, along track, and radial separation of 250 km
of the two satellites at analtitude of 200 km.

The attainable accuracy of ± 7.5 mgal for a radial separation is much better
than that derived from an along track separation which is again better than that of
a cross track separation. At a first glance this result surprises. The structure
of the gravity field in radial direction should be not much different from that in
horizontal direction. For instance the degree variance o'?( 6,) of the radial
component of the gradient of the disturbing potential relates to that of the horizon-
tal components o2( 6) or o'2( 5) (longitudinal and transversal), see equations
(A3) and (A4) of the appendix.

~(6 2 Z + 1 2 (6~ 2 .fL~ for I > 12.

The contribution of the pure error propagation part - L D LT of equation (23) -

also contained in figure 4 is the same for all three types of separation and almost
as low as the theoretical lower bound discussed in Rummel (1978). Thus the worse
results for along and cross track have to be caused by a configuration problem.
The correlation functions for acceleration differences at an altitude of 200 km -
figures 5a and 5b - and for the cross-covariance between a surface gravity anomaly
and acceleration differences - figures 6a and 6b -, both for separations of 10 km
and of 250 km provide an answer: The area covered by observations - see figure
2 - has only an extension of 8x 50 . But whereas the correlation functions for
radial separation have a zero at approximately 50 and little power at spherical
distances greater than 50 this is not at all the case for along track separation and
even worse for cross track separation. Thus, the spatial arrangement of the two
satellites does not principally influence the results of the gravity parameter esti-
mation. For an along track or cross track arrangement only a larger area around
the estimation points has to be covered by observations to yield results of the
same quality as obtained for radial separation.
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Figure 4. Estimated a posteriori standard deviation of a lox 10 mean gravity
anomaly as a function of the a priori range rate change or range

Cr rate precision in dependence of the spatial arrangement of the two
satellites (altitude: 200 kin; separation: 250 kmn) and the
contribution of L D LT (ecp. (23)).
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Figure 5a. Covariance function of acceleration differences for a
satellite altitude of 200 km and a separation of 250 km
(P1 with 00 and A=0 0 ; P2 with o=* and A=0 0 ).
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Figure 5b. Covariance function of acceleration differences for a
satellite altitude of 200 km and a separation of 10 km(Plwith P=0 ° and X=O01 ; P. with o= and X=00).
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Figure 6a. Cross--covariance function between a surface gravity anomaly and
acceleration differences at an altitude of 200 km and a seperation
of 250 km (P witho O00 and. X= 00; Pa with o= and X= 00)
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Figure 6b. Cross-covariance function between a surface gravity anomaly and
acceleration differences at an altitude of 200 km and a separation of
10km (P1 with D=00 and A=0'; P. with ;a = and A = 0).

Next, the impact of the separation of the two satellites on the standard
deviation of the estimated mean gravity anomaly has been investigated. Figure
7 contains the graphs for o(7g) for a radial separation of 10 kin, 50 km, and
250 kn. In all cases the lower satellite is at an altitude of 200 km. The contri-
bution of L D Lr, equation (23), is given, too. As to be expected, the accuracy
of the estimated gravity anomalies improves with increasing separation, if
a( ), or a( S) respectively, is kept constant. This resultis discussed already
in Rummel (1978) based on purely theoretical considerations.
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Figure 7. Variation of the estimated a posteriori standard deviation
of a lox 10 mean gravity anomaly with changing intersatelite
distance (altitude: 200 kin; radial separation) and the
contribution of L D LT (equ. (23)).
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But not only the standard deviation of the estimates should be analyzed.
Small correlations are a measure of a high mathematical independence of the
estimated parameters. For block no. 2 (figure 2) and for an optimum of obser-
vational precision attainable in a gravitational satellite mission - ±0.03 mgal
for (7( ) or ± 10 "6 ms - 1 for o(A ), respectively - the standard deviation of the
a posteriori estimates and the correlations are presented in tables 2a through 2f.
They contain on the main diagonal the standard deviation of all six considered
10 x 10 blocks and on the off-diagonals the correlations among them. The results
are given for radial, along track, and cross track separations of 10 km and 250
km at an altitude of 200 km. For radial separation almost perfect independence
is achieved. The results for along track and cross track separation show a
somewhat higher correlation in the direction of the separation. Again, this
higher correlation would decrease with data covering a larger area.

Table 2a. Standard deviation and correlations for the six
10 x 10 mean gravit3 anomalies.

1 2 3 4 5 6

8.4 -Q23 0.11 -0.14 -0.10 0.06 1

8.2 -0.23 -010 -0.17 -0.11 2

8.3 0.06 0.11 0.14 3

8.4 -0.28 0.13 4
radial
c.( )=: 0.03 mgal 8.1 026 5

_& O'(b ) =-.10-6 ms - ')
ri = 200 km
sep. 10 km 8.2 6
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Table 2b. Standard deviation and correlatious for the six

10x 10 mean gravity anomalies.

1 2 3 4 5 6

12.7 -0.02 -0.03 0.35 0.02 0 1

13.3 0.10 023 0.41 0.02 2

13.5 0.08 0.27 0.40 3

12.8 0.07 0.05 4
along track

a()--0.o03 mgal 13.1 0.11 5
('a( ) - 6 ms -1 )
r, = 200 km
sep. 10 km 13.4 6

Table 2c. Standard deviation and correlations for the six

10 x 10 mean gravity anomalies.

1 2 3 4 5 6

15.1 0.55 0.52 0.21 0.25 0.34 1

14.7 0.53 0.26 0.19 0.25 2

14.8 0.34 0.25 0.27 3

15.3 0.521 0.52 4
cross track

a(A)=_0.03mgl 14.6 0.53 5
(. a(O) = 1 10' ms - )
r, = 200 km
sep. 10 km 14.8 6
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Table 2d. Standard deviations and correlations for the six
lox 10 mean gravity anomalies.

1 2 3 4 5 6

6.9 -0.10 0.09-0.32 -010 -0.02 1

6.8 -0.04 10 -0.31 -010 2

6.9 -0.02 -0.11 0.3Q 3

6.5 -007 0.09 4
radial

a(A) - !0.03 mgal 6.6 -0.04 5
(; b) = ± 10, ms,

r, = 200 km
sep. 250 km 6.7 6

Table 2e. Standard deviations and correlations for the six
lox 10 mean gravity anomalies.

1 2 3 4 5 6

9.3 0.12 0.34 0.04 0.15 0.26 1

9.9 0.02 0.27 0.07-0.01 2

10.4 0.19 0.18 0.09 3

10.4 0.11 0.13 4
along track
(,)fO.103)mgal 10.8 0.02 5

(-' a(6) = ± lO'6sms - 1)

r, = 200 km

sep. 250 km 11.3 6
-26-



Table 2f. Standard deviations and correlations for the six
10x 10 mean gravity anomalies.

1 2 3 4 5 6

12.9 0.50 0.70 0.29 0.28 0.40 1

13.0 0.48 0.29 0.30 0.28 2

12.9 0.39 0.28 0.31 3

13.4 0.53 0.67 4
c ross track

() - 0.03 mgal 13.1 0..8 5
(-(b) 10- ms -

-
)

r, = 200 km
sep. 250 km 12.8 6

Another important factor influencing the quality of the estimated gravity
parameters is the altitude at which the experiment is performed. Figure 8 gives
the results analogous to figures 4 and 7 but now with a constant radial separation
of 50 km and for altitudes of 150 kin, 200 kin, 250 km and 300 km. The attainable
+5 igal for a lox 10 mean gravity anomaly from only 74 observations of an al-
titude of 150 km would make it definitely worthwhile to fly the experiment at this
low altitude if the related technical problems could be controlled. The increase
of the accuracy with decreasing altitude is very distinct. Table 3 contains the
results for all six blocks analogous to tables 2 for an altitude 150 km.

-27-
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Figure 8. Variation of the estimated a posteriori standard deviation
of a 1x 10 mean gravity anomaly with changing experiment
altitude (radial separation of 50 km) and the contribution of

C(Ag L D LI (eqn. (23)).
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Table 3. Standard deviations and correlations for the six

1 x 1 mean anomalies for an experiment altitude
of 150 km and a radial sevaration of 50 km.

1 2 3 4 5 6

51 0.06 -0.02 -0.31 -0.06 0.01 1

5.4 0.12 0.06 -0.29 -0.06 2

5.4 0.01 -0,06 0.30 3

4.8 0.09-0.01 4
Il

radial
la() =--0.o3 m 5.1 0.12 5
(.o(P)=± O ms -0 ) - -

r, = 150 km
Sep. 50 km 5.1 6

Finally, with a less optimal arrangement of the sample points with respect to

the lox 10 blocks - shown in figure 9 - the whole analysis has been repeated.

Representative for these results are the numbers for the six blocks given in
table 4 derived for a radial separation of 250 km at an altitude of 200 km. They
show, when compared with table 2d, a significant decrease in the accuracies of

approximately 20%.
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Figure 9. Suboptimal arrangement of sample points
(compare with figure 3).
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Table 4. Standard deviations and correlations for the six
1x 10 mean anomalies with a suboptimal
arrangement of the sample points.

1 2 3 4 5 6

8.4 0.0 006 -0.49-0.20 0.03 1

8.4 0.02-0.24-0.62 .-023 2

8.6 0.03-0.21-0.56 3

9.1 -0.07 0.08 4
radial
a0-=I 0. 03 mgl 8.5 0.02 5(O() = * 10" ms -

r, = 200 km
sep. 250 km 8.8
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Geoid Heights and Geoid Height Differences

In figure 10 the ground tracks are shown together with the locations for
which the a posteriori variances of geoid heights and geoid height differences
have been estimated (xC) .Also contained are so called suboptimal locations

70~

6.00-

5.0o-

4.00-

2.00

0.00 1.00 2.00 3.00 4.00 5.00
Figure 10. Groundtracks with the locations of the points for which

geoid heights are estimated ("x" optimal locations;
"A~" arbitrary arrangement).
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The estimation of geoid height differences is discussed in Christodoulidis (1976)
and Jekeli (1979). The a posteriori variance of a geoid height difference 6N
between two points P1 and P. is derived from the variances and covariances
of the point estimates by:

a 2 [ 6N ( P 2 -P 1 )1 = a 2 tN(P 3 ))-2covN(P);N(Pt)J+a[N(P1 ) (30)

Equation (30) indicates that mainly high correlations are responsible for low
variances or standard deviations of the geoid height differences. To me it seems
therefore no principal advantage to estimate differences of a quantity instead of
the quantity itself, except for the aspect of eliminating systematic errors with
long wavelength structure. Quite in contrast, equation (30) shows that for inde-
pendent estimates the standard deviation of a difference is A times that of the
point estimate. The characteristic of estimating differences is to be distinguished
from measuring differences, as e.g. in gravimetry, where the advantage may come
from the measurement principle.

The results will be given for point no. 3 and for geoid height differences between
points no. 3 and 4 (151 kin) and points no. 3 and 5 (302 kin). Figure 11 shows the
a posteriori standard deviation of the estimated geoid height N(P 3 ) and geoid
height differences 6N(P 4 - P3 ) and 6N( Ps- P3 ) as a function of the observational
precision a (ii). The experiment altitude is 200 km and the separation 250 km in
radial, along track and cross track direction.

Again, observational data covering a larger areawould produce estimates of
similar quality for along and cross track separation as for radial separation. The
optimal number of approximately ± 0. 70 m is achieved for 6N ( 3-4) in radial
separation. As to be expected from equation (30) the results for geoid height
differences depend very much on the correlation between the point estimates. This
produces usually a pattern of increasing a posteriori standard deviations for geoid
height differences with increasing distance of the two points, and point estimates
slightly worse than the geoid height differences for small distances. Especially
good estimates for geoid height differences are obtained when the two points are
located along the direction of separation of the two satellites, either along or
c ross track.

The dependence on the separation distance of the two satellites is displayed
in figure 12. In all cases a radial separation of an altitude of 200 km is assumed.
As for mean gravity anomaly estimates the results improve with increasing inter-
satellite distance.
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Figure 12. Variation of the estimated a posteriori standard deviation
of the geoid height N(P.) and the geoid height differences

S 6N(P - P.) and 6N(P - P,) with changing separation of the
a (N" )I -(bN two satellites (altitude: 200 kmn; radial separation).
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Rather heterogeneous looks the picture for the analysis of the dependence
of the estimates on the experiment altitude, shown in figure 13. The standard

deviation of the point estimates increase with decreasing experiment altitude.

The reason for this paradox result is again the comparably small area covered
by the sampling points. For, the cross-covariance function between surface
geoid heights and the radial component of the disturbing potential shows a first
zero at about 70 with a comparably high correlation for large spherical distances.

For geoid height differences the a posteriori standard deviation would agree with
the anticipated behavior - decreasing standard deviation with decreasing experi-

ment altitude - but only for very low range rate change or range rate noise level.

Finally, the results for points located along a ground track (" x " in figure

10) are compared with those for points located arbitrarily, somewhere between
the ground tracks (A , in figure 10). Table 5 contains the a posteriori standard

deviation for three point geoid height estimates and two standard deviations for
geoid height differences, all for a radial, along and cross track separation of
250 km at 200 km altitude, and for a radial separation of 50 km at 150 km and 200
km. The left of each pair of columns shows the numbers for the optimal point
locations, the right columns those for the arbitrary locations. A significant
dependence on the point location can only be seen for radial separations whereas
for along and cross track separations the point lo :ation plays no distinct role.

Table 5. Estimated standard deviation for geoid heights and geoid height
differences assuming a range rate change precision of =0.03
mgal for an optimal and an arbitrary location of the estimation
points, see figure 10 (altitude/separation).

radial along track cross tracki radial radial
= 0.03 mgal 200/250 200/250 200/250 150/50 1 200/50

opt. arb. opt. arb. opt. arb. opt. arb. opt. arb.

m m m m m m m m m m

N(P 3 ) 0.89 0.94 2.22 2.23 3.03 3.04 1.36 1.421 1.17 1.20
N(P 4 ) 0.90 1.01 2.24 2.2S 3.01 3.02 1.40 1.53 1.18 1.31
N( Ps) 1.08 1.15 2.31 2.47 3.03 3.06 1.65 1.78 1.41 1.49

6N(P 4 - P,) 0.72 0.98 0.94 0.95 1.67 1.76 0.73 1.031 0.77:1.04
6N(Ps-P 3) 0.94 0.96 1.17 1.41 2.69 2.69 1.23 1.29 1.13:1.14
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Figure 13. Variation of the estimated a posteriori standard
deviation of the geoid height N(P,) and the geoid

(N , a(N height differences 6N(P.-P,) and 6N(Ps-P,)with changing experiment altitude, given in km
m (radial separation of 50 km).
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Information Content Per Frequency

Of special importance for the user is that the estimated gravity parameters
really contain information down to a half wavelength of 100 km, or up to L = 180
in terms of spherical harmonics. We computed therefore from the given data
the variance and standard deviation of the geoid height of point no. 3 for the fre-
quencyranges (1113 I<-), fl121 s <-I, and (LI181 9 1< -1
separately and compared the information contained in the ranges 13-120, 121-180,
181-- . Table 6a gives the values for the a priori standard deviation, a posteriori
standard deviation and the ratio of a posteriori to a priori variance for the three
spectral ranges for a radial separation of 250 km and an altitude of 200 km. Table
6b contains the corresponding information for a radial separation of 10 km.

The ratios of the a posteriori to a priori variance indicate that

- considerable information is contained in the frequency range from 121 to 180
(1:15),

- almost no information has been extracted from frequencies higher than A = 180
(1:1.2 and 1:1.7 respectively)

- the improvement of the larger separation of 250 km against that of only 10 km
comes only from the low frequencies (1:52 versus 1:22).

Table 6a. A priori and a posteriori standard deviation and ratio of
the a priori to the a posteriori variances for three spectral
ranges (altitude: 200 kin; radial separation 250 km).

spectral ranges
13 - 120 121 - 180 181 -oo

a priori 5.47 0.53 0.46
r.m.s.

a posteriori 0.76 0.14 0.36
r.m.s.

a,,post. vaor. 1:52 1-15 1" 1.7
a priori var. I
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Table 6b. A priori and a posterori standard deviation and ratio of
the a posteriori to the a priori variances for three spectral
ranges (altitude: 200 kin; radial separation 10 kmn).

spectral ranges
13 -120 121 -180 181 - o

a priori 5.47 0.53 0.46
r. m .s.

a posteriori 1. 17 0. 14 0. 42
r. m. s. ____

a pst vr. 1:22 1:15 1:12
a priori var.__ ______

-39-



6. Summary and Conclusions

The goal of this study was an error analysis for Ic x 10 mean gravity
anomalies, point geoid heights, and geoid height differences derived from ob-
servations in a "low-low" satellite-to-satellite tracking experiment. The chosen
estimation method was least squares collocation. In order to facilitate the mathe-
matical model not the range rates themselves but their time derivatives, i.e.
range rate changes or line of sight accelerations, were assumed to be given.

The orbit requirements were treated separately in an empirical sensitivity
study. If we assume a range rate change precision of =0.03 mgal (- 10- ' m s - 1)
and want to keep systematic errcrsbelow 1/10 of this level, unmodelled high fre-
quency disturbances,in the orbit, e. g. due to drag effects, would have to be kept
below 1 cm in radial direction, and 1. 5 m in along or cross track direction.
Thus, a drag-free capability or a system of micro-accelerometers seems to be
necessary. Unmodelled long wavelength errors modulated by short wavelength
model coefficients have to be kept smaller than around 10 m independent of the
direction of the separation, and should therefore be no limiting factor.

The a posteriori standard deviations of the lox 10 mean gravity anomalies
were analyzed as a function of the experiment altitude, the separation, the spatial
arrangement of the two satellites, and the location of blocks with respect to the
sample points. For a separation of 250 km of 200 km altitude and a range rate
precision of :0.03 mgal a standard deviation of ± 6.5 mgal was derived, with
almost no correlation between the individual blocks.

The same criteria, I.e. experiment altitude, separation, spatial arrange-
ment of the satellites, and the location of the points with respect to the sample
points, were examined for geoid heights and geoid height differences. The
results for geoid height differences depend mainly on the level of correlation
between the point estimates. For small distances, e.g. 150 kin, they become
as low as 0.65 m (altitude 200 kin, separation 250 kin, a(<)) = ±0.03 regal).
For point geold heights (and the same situation as above) about ±0.80 m are
feasible. In addition, the information content in the three frequency ranges from
degree 13 to 120, 121 to 180, and 181 to infinity was investigated separately. The
decrease of the a priori variance by a factor of 12 in the frequency range from
121 to 180 shows that sufficient short-wavelength information - down to half wave-
lengths of 100 km - can be deduced from the low-low SST experiment. Throughout
the analysis a reference field up to degree 12 was assumed to be known perfectly.

Whereas the results. for mean gravity anomalies would satisfy in resolution
as well as in accuracy the defined demands of geophysicists, the obtained numbers
for geold heights and geoid height differences are not sufficient for most oceano-
graphic purposes. On the other hand, it is worthwhile to remember that the derived
geold height precision of -0.80 m is very well comparable with the excellent result
for sea surface topography, as obtained from GEOS-3 altimetry.
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Appendix

The degree variance model underlying all further derivations is the one
published by Tscherning and Rapp (1974) for gravity anomalies

a, 2(6g) = S14 2  A (I-i) = (A )
(I- 2)(A+B) cL

where s = (r 2 /rP 2 ) is the square ratio of the radius of an adopted Bjerhammar
sphere and the geocentric distance of the point under consideration, A = 425. 2S
mgaland B = 24. Then the degree variances of the disturbing potential, and of
the radial and horizontal components of the gradient of the disturbing potential
become:

a7(T) = (A2)
(t -i)- C,

1- 2 s1+2 - 1 2 c., and (A3)
a(69)= U2 (6X) = + 1 . (A4)

(I - 1) 2(M

The square of the velocity difference of two satellites is, according to e.g. Wolff
(1969), approximated by 6 A T, where " = is the mean

-12 (2c T 2
velocity. Thus the degree variance model for a velocity difference for instance
in radial direction becomes:

2 1F (_ tr. +i 2
Oad6(IX I) - (1- )rQL ) O (T) (A5)

with rp and rq the geocentric radii of the two satellites. Similarily, the degree
variance model for an acceleration difference, again in radial direction, is:

~(7Lx =,( ) a (+ 2 ). (A6)t 212 7- l (\rp ) 1 6)

Equations (A5) and (A6) are slightly optimistic degree variance models for range
rate, and range rate change signals. They are optimistic in the sense that one
assumes the two satellites to be arranged in such a way that they either sense
perfectly the radial or the horizontal component. Finally, the degree variance

model for the second radial derivative is

O (Tr?) = SJ+3 (t+1)2 ( 1 2) - cl (A7)rep (t-1) c .(7

A comparison of signal and noise requires a degree or degree-order model
for the noise, too. We postulate white noise behavior and approximate its covari-
ance function by a first-order Gauss-Markov model, e.g. for range rates:
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with m(? ... variance of the random observation error,
c ... inverse correlation length, and

... spherical distance.
A harmonic analysis on the sphere yields for a coefficient of degree I and order
m of the noise process:

(Z.( 6) ( A9)

The inverse correlation length c (units of arc) is derived from the correlation
length in time units, te, or length units, s,, by:

c3 2 P _ (AlO)
2' tc Sc

where p = 2- (r" 3 /GM) i is the orbital period. Equation (A9) holds for the degree-
order variance of the noise of any type of observed quantity if only the corresponding
noise variance and correlation length are inserted.
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